On April 12th, 2018 I gave a talk about Explaining complex machine learning models with LIME at the Hamburg Data Science Meetup - so if you’re intersted: the slides can be found here: https://www.slideshare.net/ShirinGlander/hh-data-science-meetup-explaining-complex-machine-learning-models-with-lime-94218890
Traditional machine learning workflows focus heavily on model training and optimization; the best model is usually chosen via performance measures like accuracy or error and we tend to assume that a model is good enough for deployment if it passes certain thresholds of these performance criteria.
On April 4th, 2018 I gave a talk about Deep Learning with Keras at the Ruhr.Py Meetup in Essen, Germany. The talk was not specific to Python, though - so if you’re intersted: the slides can be found here: https://www.slideshare.net/ShirinGlander/ruhrpy-introducing-deep-learning-with-keras-and-python
Ruhr.PY - Introducing Deep Learning with Keras and Python von Shirin Glander There is also a video recording of my talk, which you can see here: https://youtu.
Recently, I announced my workshop on Deep Learning with Keras and TensorFlow.
The next dates for it are January 18th and 19th in Solingen, Germany.
You can register now by following this link: https://www.codecentric.de/schulung/deep-learning-mit-keras-und-tensorflow
If any non-German-speaking people want to attend, I’m happy to give the course in English!
Contact me if you have further questions.
As a little bonus, I am also sharing my sketch notes from a Podcast I listened to when first getting into Keras:
Slides from Münster Data Science Meetup These are my slides from the Münster Data Science Meetup on December 12th, 2017.
knitr::include_url("https://shiring.github.io/netlify_images/lime_meetup_slides_wvsh6s.pdf")
My sketchnotes were collected from these two podcasts:
https://twimlai.com/twiml-talk-7-carlos-guestrin-explaining-predictions-machine-learning-models/ https://dataskeptic.com/blog/episodes/2016/trusting-machine-learning-models-with-lime Sketchnotes: TWiML Talk #7 with Carlos Guestrin – Explaining the Predictions of Machine Learning Models & Data Skeptic Podcast - Trusting Machine Learning Models with Lime
Example Code the following libraries were loaded: library(tidyverse) # for tidy data analysis library(farff) # for reading arff file library(missForest) # for imputing missing values library(dummies) # for creating dummy variables library(caret) # for modeling library(lime) # for explaining predictions Data The Chronic Kidney Disease dataset was downloaded from UC Irvine’s Machine Learning repository: http://archive.