This is code that will encompany an article that will appear in a special edition of a German IT magazine. The article is about explaining black-box machine learning models. In that article I’m showcasing three practical examples:
Explaining supervised classification models built on tabular data using caret and the iml package Explaining image classification models with keras and lime Explaining text classification models with xgboost and lime
These are the slides from my workshop: Introduction to Machine Learning with R which I gave at the University of Heidelberg, Germany on June 28th 2018. The entire code accompanying the workshop can be found below the video.
The workshop covered the basics of machine learning. With an example dataset I went through a standard machine learning workflow in R with the packages caret and h2o:
reading in data exploratory data analysis missingness feature engineering training and test split model training with Random Forests, Gradient Boosting, Neural Nets, etc.
Since I migrated my blog from Github Pages to blogdown and Netlify, I wanted to start migrating (most of) my old posts too - and use that opportunity to update them and make sure the code still works.
Here I am updating my very first machine learning post from 27 Nov 2016: Can we predict flu deaths with Machine Learning and R?. Changes are marked as bold comments.
The main changes I made are: